Pancytopenia in a 38 year old male: ICUS to CCUS to MDS

SOCIETY FOR HEMATOPATHOLOGY CASE SH2017-0050
MARY ANN THOMPSON ARILDSEN, MD.PH.D.
VANDERBILT UNIVERSITY MEDICAL CENTER, NASHVILLE, TN
Clinical Presentation

38 year old male who was found to have leukopenia and thrombocytopenia when hospitalized for a snowboarding accident

Follow-up CBC in November 2015 at hematologist’s office:
- WBC 1.4 K/µl, Hct 39%, plt 92 K/µl ANC 280/µl, MCV 80.8 fl

Outside bone marrow biopsy dated 11/18/15: MODERATELY HYPERCELLULAR MARROW WITH MILD ERYTHROID AND MEGAKARYOCYTIC HYPERPLASIA
- Mild erythroid and megakaryocytic atypia
- Peripheral blood flow cytometry: no significant blast population and no monotypic B-cell or aberrant T cell population
- Karyotype: 46, XY

• ICUS: idiopathic cytopenia of uncertain significance
Clinical Presentation

• Patient was referred to VUMC for persistent pancytopenia (8/24/16, 10 mo. later)
 • No fatigue, night sweats, or weight loss
 • CBC: WBC 2.3 K/ul, Hct 40%, plts 104 K/ul

• Bone marrow diagnosis:
 • NORMOCYLLULAR MARROW WITH TRILINEAGE HEMATOPOIESIS; MILD MEGAKARYOCYTIC
 DYSPLASIA, NO INCREASE IN BLASTS
 • Occasional hypolobated neutrophils in the peripheral blood
 • No increase in blasts by morphology, flow cytometry, or immunohistochemistry
 • Single interstitial lymphoid aggregate, mix of T and B cells by immunohistochemistry
8/24/16 bone marrow aspirate and peripheral smear
8/24/16 bone marrow biopsy and particle-H&E stain
Ancillary studies on 8/24/16 marrow

• Flow cytometry: 3.3% myeloblasts with a normal immunophenotype
• Karyotype: 46, XY
• FISH: Normal signal patterns using standard panel of MDS probes (5p15.2, 5q31, cen7, 7q31, cen8, 20q12)
• What next? The clinician called and said, “Look, I know this isn’t your usual protocol, but I would like to do NGS”.
• OnkoSight BRLI myeloid disease panel of 37 genes
 • SRSF2 p.Pro95Leu (43.15%)
 • RUNX1 p.Arg169Lysfs*44 (11.59%)
 • IDH1 p.Arg132Cys (42.26%)
 • NRAS p.Gly12Asp (11.87%)
 • BCOR p.Met1020Val—unclear variant (19.85%)
ICUS ➝ CCUS

- Bone marrow: Normocellular marrow with trilineage hematopoiesis; mild megakaryocytic dysplasia; no increase in blasts; multiple mutations present consistent with CCUS

- CCUS: Clonal cytopenias of undetermined significance
1/25/17 peripheral blood smear
CBC: WBC 0.9K/µl, Hct 38%, Plts 183 K/µl ANC 280/µl

Hypogranular neutrophils
1/25/17 bone marrow aspirate
1/25/17 bone marrow biopsy
• Bone marrow on 1/25/17, interval of 5 months
 • CBC: WBC 0.9K/µl, Hct 38%, Plts 183 K/µl ANC 280/µl
 • BONE MARROW: NORMOCYLLULAR MARROW WITH BILINEAGE DYSPLASIA; NO INCREASE IN BLASTS; CONSISTENT WITH MYELODYSPLASTIC SYNDROME
 • Best classified as MDS with multilineage dysplasia (MDS-ML)
 • Myeloid and megakaryocytic dysplasia
 • No increase in myeloblasts by flow cytometry
 • Normal karyotype, 46, XY
Progression of the patient’s MDS

• Bone marrow 6/1/17: NORMOCELLULAR MARROW WITH ERYTHROID HYPERPLASIA, BILINEAGE DYSPLASIA, AND INCREASED BLASTS (10% BY IHC), CONSISTENT WITH MYELODYSPLASIA WITH EXCESS BLASTS

• Bone marrow 7/4/17: NORMOCELLULAR MARROW WITH PERSISTENT INVOLVEMENT BY MYELODYSPLASTIC SYNDROME WITH EXCESS BLASTS-1 (9.2% BY FLOW CYTOMETRY)

• Bone marrow 7/24/17: NORMOCELLULAR MARROW WITH MILD TRILINEAGE DYSPLASIA, CONSISTENT WITH PERSISTENT MYELODYSPLASTIC SYNDROME; NO INCREASE IN BLASTS
Progression of cytopenias

- **WBC**: 2.1, 2.9, 1.8, 1.5, 1.0, 1.6, 4.6
- **HCT**: 41, 12, 12, 12, 12, 12, 12
- **PLTS**: 125, 125, 125, 125, 125, 125, 125
- **ANC**: 1.6, 0.26, 0.28, 0.37, 0.57, 0.87, 1.2

TREATMENT
- Decitabine
- 6 cycles
- Pretransplant. Day 0=8/8/17
- Mismatched unrelated ablative PBSCT
Clinical significance of somatic mutation in unexplained blood cytopenia

Luca Malcovati,1,2 Anna Galli,2 Erica Travaglini,2 Ilaria Ambaglio,2 Ettore Rizzo,3 Elisabetta Molteni,1 Chiara Elena,1,2 Virginia Valeria Ferretti,1 Silvia Catricala,2 Elisa Bono,1,2 Gabriele Todisco,1,2 Antonio Bianchessi,1,2 Elisa Rumi,1,2 Silvia Zibellini,2 Daniela Pietra,2 Emanuela Boveri,4 Clara Camaschella,5,6 Daniela Toniolo,5 Elli Papaemmanuil,7 Seishi Ogawa,8 and Mario Cazzola1,2

Study design:
- Learning cohort of 683 consecutive patients being worked up for unexplained cytopenias.
- Targeted NGS using a 40 gene panel was performed (Illumina TruSight Myeloid Sequencing Panel).
- Predictive values of mutation analysis were confirmed in an independent validation cohort of patients with a suspected diagnosis of myeloid neoplasm (190 patients).

Results:
- Standard work up of the cytopenic patients demonstrated that 60% of patients had a myeloid neoplasm, 22.5% had ICUS, 17.5% had other cause of cytopenia.
- 64% of patients with cytopenias had a somatic mutation in at least 1 of the 40 genes.
- Predictive value of mutations for myeloid neoplasm group
 - Spliceosome genes (SF3B1, SRSF2, U2AF1), JAK2, and RUNX1 mutations had highest predictive value for myeloid neoplasm (0.88-0.97).
 - Having 2 or more mutations had an odds ratio of 4.69 for having MDS or another myeloid neoplasm.
- Of the patients with original diagnosis of ICUS, 25% developed a myeloid neoplasm.
 - 36% of ICUS patients were found to have 1 or more mutation (CCUS).
 - Allele frequencies of 10% or greater were significant.
 - CCUS had a hazard ratio of 13.9 compared to ICUS for developing a myeloid neoplasm.
 - CCUS: 5 yr and 10 yr cumulative probability of progression to myeloid neoplasm: 82% and 95% compared to 9% for unmutated ICUS.
 - Highly predictive mutation pattern: Spliceosome gene mutations, or one of TET2, ASXL1, or DNMT3A with additional mutations.
Probability of progression to myeloid neoplasm of patients receiving a provisional diagnosis of ICUS, according to mutation status and pattern.

Luca Malcovati et al. Blood 2017;129:3371-3378
Our patient

• Highly predictive mutation pattern
 • Splicesome mutation: SRSF2
 • 2 or more mutations (5)
 • RUNX1, IDH1/IDH2, and BCOR in the list of most frequent co-occurring mutations associated with development of myeloid neoplasm

• Time interval between ICUS and MDS: approximately 15 months

• Initial NGS performed due to ICUS diagnosis changed treatment approach
 • Frequent monitoring by CBC and bone marrow biopsy
 • Treatment with Decitabine
 • Allo PBSCT: potential cure
Questions raised by these studies

• What is the mechanism by which spliceosome mutations lead to MDS?

• Should NGS be performed on all patients with unexplained cytopenias?
How do spliceosome mutations cause MDS?

- SRSF2 P95H mutation affects specificity of pre-mRNA binding
- Mis-splicing of known hematopoietic regulators, among other targets
- Specifically, EZH2 splicing is altered, introducing a premature termination codon and accelerated mRNA degradation
- EZH2 encodes a histone H3K27 methyltransferase commonly mutated in MDS
- SRSF2 and EZH2 mutations are mutually exclusive in mutational studies of MDS patients

Eunhee Kim, Janine O. Ilagan, Yang Liang, et al. SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition
Cancer Cell, Volume 27, Issue 5, 2015, 617–630
http://dx.doi.org/10.1016/j.ccell.2015.04.006
Should NGS be performed on all patients with unexplained cytopenias?

• Screening for other causes essential
 ◦ Nutritional
 ◦ Infectious
 ◦ Autoimmune

• Age cut-off?
 • Age range in the Malcovati study was 18-92 y.o., median 66 y.o., data not broken down by age
 • Previous study of 12,380 patients unselected for cancer or hematologic disease:
 • Genovese et al NEJM 371: 26, 2014
 • Whole exome sequencing of peripheral blood cell DNA
 • 10% incidence of somatic mutations in patients older than 65 years.
 • 1% incidence of somatic mutations in patients younger than 50 years.
Final panel diagnoses

• 8/24/16 bone marrow: Clonal cytopenia of undetermined significance (CCUS)

• 1/25/17 bone marrow: Myelodysplastic syndrome

• Subsequent bone marrow biopsies demonstrate progression to myelodysplastic syndrome with excess blasts-2.