Impact of New Diagnostic Markers on Treatment Decisions in Acute Myeloid Leukemia

Hartmut Döhner
Medical Director, Department of Internal Medicine III
Director, Comprehensive Cancer Center Ulm
University of Ulm, Germany
Chair, German-Austrian AML Study Group (AMLSG)
Genetic Diversity of AML

45% normal karyotype
5% t(8;21)
6% inv(16)
2% t(9;11)
2% t(11q23)
1% t(6;9)
1% inv(3)/t(3;3)

11% complex karyotype

23% various
e.g. -5/5q-, -7, 7q-, +8, 9q-, +13, 20q-

excl. APL

Survival According to Cytogenetic Risk Group:
AMLSG Treatment Trials (16-60 yrs, n=1130)

<table>
<thead>
<tr>
<th>Time (years)</th>
<th>Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Favorable</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td>Adverse</td>
</tr>
</tbody>
</table>

- inv(16); t(8;21); t(15;17)
- normal karyotype; all other
- inv(3); t(6;9); t(v;11q23)
- -5/5q-; -7; abn(17p); complex
Genetic Diversity of AML

NPM1, CEBPA, FLT3, RUNX1, MLL, RAS, WT1, IDH1/2, TET2, ASXL1
BAALC, ERG, EVI1, MN1, miRs

45% normal karyotype

KIT, RAS, FLT3, CBL

5% t(8;21)
6% inv(16)

2% t(9;11)
2% t(11q23)

1% t(6;9)

 FLT3 1% inv(3)/t(3;3)

11% complex karyotype

TP53, ?

23% various
e.g. -5/5q-, -7, 7q-, +8, 9q-, +13, 20q-

excl. APL
Normal karyotype AML

NPM1, CEBPA, FLT3-ITD, FLT3-TKD, MLL-PTD, RAS, WT1

Prognostic Impact of Genotypes in Younger Adults with CN-AML

Relapse-Free Survival

Overall Survival

Clinical Significance

Diagnosis

New provisional entities:
AML with mutated **NPM1**
AML with mutated **CEBPA**

Risk Stratification

Fav
- t(8;21)(q22;q22); **RUNX1-RUNX1T1**
- inv(16)(p13.1q22); **CBFB-MYH11**
Mutated **NPM1** without FLT3-ITD (nl karyotype)
Mutated **CEBPA** (nl karyotype)

Int-I
- Mutated **NPM1** and FLT3-ITD (nl karyotype)
- Wild type **NPM1** and FLT3-ITD (nl karyotype)
- Wild type **NPM1** without FLT3-ITD (nl karyotype)

Int-II
- t(9;11)(p22;q23); **MLLT3-MLL**;
cytogenetic abnormalities not classified as favorable or adverse

Adv
- inv(3)(q21q26.2) or t(3;3)(q21;q26.2); **RPN1-EVI1**
- t(6;9)(p23;q34); **DEK-NUP214**; t(v;11q23); **MLL** rearranged; -5 or del(5q); -7; abn(17p); complex karyotype (=3)

AML with Mutated CEBPA

Bi-allelic mutations in ~2/3 of cases (mostly N- and C-term)
Mono-allelic mutations in 1/3 of cases

Biological and clinical difference?

Study of 1182 cytogenetically normal AML patients (16-60 yrs)

- 193 patients from HOVON SAKK (Erasmus University)
- 989 patients from AMLSG cohort (University of ULM)
- CEBPA, FLT3ITD, FLT3TKD, NPM1, NRAS
Clinical Outcome in CEBPA Subgroups

![Graph showing cumulative proportion survival over time for different subgroups of CEBPA. The graph indicates that CEBPA^{dm} and CEBPAsm have lower cumulative survival compared to CEBPA^{wt}.]

- CEBPA^{dm} versus CEBPA^{wt}: \(P < 0.0001 \)
- CEBPAsm versus CEBPA^{wt}: \(P = 0.05 \)
- CEBPAsm versus CEBPA^{dm}: \(P = 0.06 \)
Unsupervised Gene Expression Analyses

Is $CEBPAdm$ a unique group in terms of GEP?

Is $CEBPAsm$ a unique group in terms of GEP?

Taskesen, Bullinger et al. Submitted.
Isocitrate Dehydrogenase (IDH)

- **Mutations first reported in malignant gliomas**
 - Glioblastoma multiforme (12%); particularly frequent in anaplastic astrocytoma, oligodendroglioma, sec. glioblastoma ($IDH1^{mut} \sim 70\%; \ IDH2^{mut} >3\%$)
 - Mutational cluster in exon 4: $IDH1^{mut}$ (R132), $IDH2^{mut}$ (R172)
 - Associated with younger age and better survival

- **Mutations in AML identified by sequencing a CN-AML genome**
 - $IDH1$ mutations found in 15/187 (8%) AML and strongly associated with normal karyotype AML (13/80; 16%); no $IDH2$ mutation found

Cancer-Associated *IDH* Mutations

IDH1

- IDH1^{R132 mut}

IDH2

- IDH2^{R172K}
- IDH2^{R140Q}

2HG elevated in AML and glioblastomas

- Production of an oncogenic metabolite
- Inherited disorder: 2-hydroxyglutaric aciduria

Prognostic Impact of *IDH1* and *IDH2* Mutations in Cytogenetically Normal AML

Translation into Novel Therapies: AML with FLT3 Internal Tandem Duplication

- Found ~ 25% of adult patients with AML
- **Impact on prognosis: poor**

 Impact of mutant-to-wild type ITD allelic ratio

 Impact of ITD insertion site (JM vs. TK-1 domain)

- **Impact on therapy**

 -> evaluation of FLT3 inhibitors

 eg, PKC 412, CEP-701 (phase III); AC220 (phase II)

 -> allogeneic HSCT may improve outcome
Tyrosine Kinase Inhibitors: Selectivity and Potency

Phase III Study of Chemotherapy + Midostaurin (PKC412) or Placebo in Newly Diagnosed Patients ≥ 60 Years of Age with FLT3 Mutated Acute Myeloid Leukemia

CALGB, AMLSG, CETLAM, ECOG, EORTC, GIMEMA, NCIC, OSHO, PETHEMA, SAL, SWOG

Induction
Daunorubicin
Cytarabine
+ Placebo

Consolidation x4**
High-Dose Cytarabine
+ Placebo

Maintenance
Placebo

Daunorubicin
Cytarabine
+ PKC412

High-Dose Cytarabine
+ PKC412

PKC412

FLT3 ITD/TKD Mutation Screening Within 48 Hours*
n=514

*Patients may receive hydroxyurea during screening phase
**Patients with an HLA-compatible family donor may proceed to allogeneic HSCT

PI: Dr. R. Stone, CALGB
AML with Mutated \(K\!\!T \)

- Mutations mostly found in CBF AML
 - \(\text{inv}(16)(\text{p}13.1\text{q}22); \text{CBFB-My}h11 \) (30-35%)
 - \(\text{t}(8;21)(\text{q}22;\text{q}22); \text{Runx1-Runx1t1} \) (30-35%)

- Higher \(K\!\!T \) expression in CBF AML

- Impact on prognosis: in general poor

- Impact on therapy
 -> evaluation of KIT inhibitors
 eg, dasatinib, PKC412, CEP-701
Phase II Study of Chemotherapy + Dasatinib in Patients with Newly Diagnosed Core Binding Factor (CBF) AML - AMLSG 11-08

Induction
- CBF Mutation Screening Within 48 Hours
- Daunorubicin + Cytarabine + Dasatinib

Consolidation x 4
- High-Dose Cytarabine* + Dasatinib

Maintenance
- Dasatinib 1 year

All adult patients eligible for intensive therapy, no upper age limit

* Cytarabine: 18-60yrs: 3g/m², q12hr, d1-3; >60yrs: 1g/m², q12hr, d1-3

PI: H. Döhner, AMLSG [ClinicalTrials.gov Identifier: NCT00850382]
Log$_{10}$ Reduction of Fusion Gene Copy Ratios in Blood After Induction By Application of Dasatinib

AML with \textit{NPM1} Mutation

- Found in 25-35\% of AML (45-60\% of CN-AML)*
- Exon 12 mutations leading to cytoplasmic shift of protein*
- Immunophenotype
 \begin{itemize}
 \item High CD33 expression \textbf{(Low to absent CD34)}
 \end{itemize}
- Potential impact of ATRA as molecular therapy**

Phase III Study of Intensive Chemotherapy +/- ATRA
In Previously Untreated Patients >60 yrs with AML
AMLSG HD98B Trial

Beneficial Effect of ATRA Restricted to AML with $NPM1^{\text{mut}}/FLT3-\text{ITD}^{\text{neg}}$

ATRA and Survival in Younger Adult AML with \textit{NPM1} Mutation (AMLSG 07-04)

\textbf{Planned interim analysis 04-2009}
Phase III Study of Chemotherapy in Combination with ATRA with or without Gemtuzumab Ozogamicin (Mylotarg) in Patients with $NPM1^{\text{mut}}$ Acute Myeloid Leukemia

$\text{AMLSG 09-09 (active)}$

Induction x2
- ATRA-ICE
- ATRA-ICE + GO

Consolidation 1
- ATRA Cytarabine**
- ATRA Cytarabine** + GO

Consolidation 2+3
- ATRA Cytarabine**

NPM1 Mutation
Screening Within 48 Hours*

* All adult patients eligible for intensive therapy, no upper age limit
* Patients may receive hydroxyurea during screening phase
** Cytarabine: 18-60yrs: 3g/m2, q12hr, d1-3; >60yrs: 1g/m2, q12hr, d1-3

PL: R.F. Schlenk; Supported by Else Kröner-Fresenius-Foundation
AMLSG Genotype-Specific Treatment Trials

Molecular Screening 24-48 hrs

- **APL [t(15;17)] ~10%**
 - ATO+ATRA APL0406 GIMEMA / AMLSG / SAL

- **CBF AML ~13%**
 - Dasatinib AMLSG 11-08

- **AML FLT3mut ~25%**
 - PKC412 CALGB 10603 age <60
 - SU11248 AMLSG 10-07 age ≥60

- **AML NPM1mut ~17%**
 - ATRA +/- GO AMLSG 09-09

- **Other subtypes (mainly high-risk) ~35%**
 - Azacitidine + induction, Allo HSCT (1st priority), or HiDAC + AZA maintenance AMLSG 12-09
 - C-IARA (Clofarabine), Allo HSCT (or HiDAC) AMLSG 13-09
Acute Myeloid Leukemia in 2010

- Identification of novel genetic and epigenetic changes is facilitated by progress in genomics/epigenomics technology
- Cytogenetic and molecular diagnostics increasingly allow improved diagnosis, prognosis, and prediction
- Translation of molecular findings to clinic is increasing
 - 2008 WHO classification for de novo AML primarily based on genetic findings; >50% so classified (including provisional entities)
 - Clinical trials targeting patients with mutant tyrosine kinases and other molecules, or epigenetic abnormalities on-going
A. Corbacioglu J. Krauter S. Lugthart
V. Gaidzik F. Damm P. Valk
S. Gröschel M. Heuser B. Löwenberg
S. Kayser G. Göhring R. Delwel
J. Krönke B. Schlegelberger Rotterdam
M. Kühn A. Ganser
P. Paschka
F. Rücker
S. Fröhling
F. Kuchenbauer
C. Scholl
L. Bullinger
R. Schlenk
K. Döhner
Universität Ulm

A. Benner
P. Lichter
C. Plass
DKFZ, Heidelberg

Rotterdam
CALGB

R. Larson
G. Marcucci
C. Bloomfield